Genetic background of the rare Yus and Gerbich blood group phenotypes: homologous regions of the GYPC gene contribute to deletion alleles.
نویسندگان
چکیده
The GYPC gene encodes the glycophorins C and D. The two moieties express 12 known antigens of the Gerbich blood group system and functionally stabilize red blood cell membranes through their intracellular interaction with protein 4.1 and p55. Three GYPC exon deletions are responsible for the lack of the high-frequency antigens Ge2 (Yus type, exon 2 deletion), Ge2 and Ge3 (Gerbich type, exon 3 deletion), and Ge2 to 4 (Leach type, exons 3 and 4 deletion), but lack exact molecular description. A total of 29 rare blood samples with Yus (GE:-2,3,4) and Gerbich (GE:-2,-3,4) phenotypes, including individuals of Middle-Eastern, North-African or Balkan ancestry were examined genetically. All phenotypes could be explained by 4 different Yus alleles, characterized by deletions of exon 2 and adjacent introns, and 3 different Gerbich alleles, with deletions of exon 3 and adjacent introns. A 3600 base pair GYPC region, encompassing exon 2 and flanking region, shares a high degree of sequence homology with a region flanking exon 3, probably representing an evolutionary duplication event. Defining the expression of Gerbich variants presently relies on rare serological reagents. Our approach substitutes the serological characterization with a precise genotype approach to identify the rare Yus and Gerbich alleles.
منابع مشابه
Molecular characterization of erythrocyte glycophorin C variants.
Human erythrocyte glycophorin C plays a functionally important role in maintaining erythrocyte shape and regulating membrane mechanical stability. Immunochemical and serologic studies have identified a number of glycophorin C variants that include the Yus, Gerbich, and Webb phenotypes. We report here the molecular characterization of these variants. Amplification of glycophorin C mRNA from the ...
متن کاملP-204: Evaluation of DPY19L2 Gene Deletion As A Major Cause of Globozoospermia, in Iranian Globozoospermic Infertile Men
Background: Male infertility is a Multifactorial syndrome encompassing a wide variety of disorders. In more than half of infertile men, the cause of their infertility is unknown (idiopathic) and could be congenital or acquired. Globozoospermia, also called round-headed spermatozoa, is a rare disease with incidence< 0.1% among male infertile patients. The most prominent feature of globozoospermi...
متن کاملMolecular Study of Partial Deletions of AZFc Region of the Y Chromosome in Infertile Men
Background & Aims: The most significant cause of infertility in men is the genetic deletion in the azoospermia factor (AZF) region that is caused by the process of intra- and inter-chromosomal homologous recombination in amplicons. Homologous recombination could also result in partial deletions in AZF region. The aim of this research was to determine the association between the partial AZFc del...
متن کاملSingle-nucleotide polymorphism of rs11061971 (+219 A>T) in adiponectin receptor 2 (AdipoR2) gene and its association with risk of type 2 diabetes among an Iranian population
Background and Objectives: Genetic modifications in the adiponectin receptor 2 (AdipoR2) gene can affect phenotypes associated with insulin resistance and diabetes. The purpose of this study was to evaluate the possible role of genetic modifications in the AdipoR2 gene, to determine the frequency of genotypes and polymorphism alleles of this gene at rs11061971 (+219 A>T), and to investigate its...
متن کاملInvestigation of the Relationship between Genetic Polymorphisms in GSTM1 and GSTT1 Genes and Susceptibility to Lung Functional Abnormalities in Workers Exposed to Air Pollutants at Isfahan Steel Plant
Introduction: Gaseous air pollutants can cause oxidative stress, which can lead to lung damage by inducing inflammation. Polymorphisms in the glutathione S-transferase (GST) gene are involved in the pathogenesis of many diseases, including lung disease. Two glutathione S-transferase Mu 1 (GSTM1) and glutathione S-transferase theta 1 (GSTT1) genes belong to this family, in which deletions occur ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- British journal of haematology
دوره 177 4 شماره
صفحات -
تاریخ انتشار 2017